Jumat, 21 Oktober 2011

Family Reoviridae Virus

Reoviridae is a family of viruses that can affect the gastrointestinal system (such as Rotavirus) and respiratory tract. Viruses in the family Reoviridae have genomes consisting of segmented, double-stranded RNA (dsRNA). The name "Reoviridae" is derived from respiratory enteric orphan viruses. The term "orphan virus" means that a virus that is not associated with any known disease. Even though viruses in the Reoviridae family have more recently been identified with various diseases, the original name is still used.

Reovirus infection occurs often in humans, but most cases are mild or subclinical. The virus can be readily detected in feces, and may also be recovered from pharyngeal or nasal secretions, urine, cerebrospinal fluid, and blood. Despite the ease of finding Reovirus in clinical specimens, their role in human disease or treatment is still uncertain.

Some viruses of this family infect plants. For example, Phytoreovirus and Oryzavirus.

Structure
Reoviruses are non-enveloped and have an icosahedral capsid (T-13) composed of an outer and inner protein shell. The genomes of viruses in Reoviridae contain 10-12 segments which are grouped into three categories corresponding to their size: L (large), M (medium) and S (small). Segments range from ~ 3.9 kbp – 1kbp and each segment encodes 1-3 proteins. Reoviridae proteins are denoted by the Greek character corresponding to the segment it was translated from (the L segment encodes for λ proteins, the M segment encodes for μ proteins and the S segment encodes for σ proteins).

Since these viruses have dsRNA genomes, replication occurs exclusively in the cytoplasm and the virus encodes several proteins which are needed for replication and conversion of the dsRNA genome into (+)-RNAs. The virus can enter the host cell via a receptor on the cell surface. The receptor is not known but is thought to include sialic acid and junctional adhesion molecules (JAMs). The virus is partially uncoated by proteases in the endolysosome, where the capsid is partially digested to allow further cell entry. The core particle then enters the cytoplasm by a yet unknown process where the genome is transcribed conservatively causing an excess of (+) sense strands, which are used as mRNA templates to synthesize (-) sense strands. Viral particles begin to assemble in the cytoplasm 6–7 hours after infection.

Genera and type species
Fifteen genera of Reoviridae exist and are divided based on the presence of a "turret" protein on the inner capsid.

As of July 2009, ratified by the ICTV, there are two subfamilies; Sedoreovirinae & Spinareovirinae in the family Reoviridae.

"The name Spinareovirinae will be used to identify the subfamily containing the spiked or turreted viruses and is derived from ‘reovirus’ and the Latin word ‘spina’ as a prefix, which means spike, denoting the presence of spikes or turrets on the surface of the core particles. The term ‘spiked’ is an alternative to ‘turreted’, that was used in early research to describe the structure of the particle, particularly with the cypoviruses. The name Sedoreovirinae will be used to identify the subfamily containing the non-turreted virus genera and is derived from ‘reovirus’ and the Latin word ‘sedo’, which means smooth, denoting the absence of spikes or turrets from the core particles of these viruses, which have a relatively smooth morphology."

The subfamily Sedoreovirinae contains 6 genera:

    Cardoreovirus
    Mimoreovirus
    Orbivirus
    Phytoreovirus
    Rotavirus
    Seadornavirus

The subfamily Spinareovirinae contains 9 genera:

    Aquareovirus
    Coltivirus
    Cypovirus
    Dinovernavirus
    Fijivirus
    Idnoreovirus
    Mycoreovirus
    Orthoreovirus
    Oryzavirus

Therapeutic applications
The reovirus has been demonstrated to have oncolytic (cancer-killing) properties and has encouraged the development of reovirus-based therapies for cancer treatment.

Reolysin is a formulation of reovirus that is currently in clinical trials for the treatment of various cancers.

0 komentar:

Posting Komentar